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A Plancherel measure associated to set partitions
and its limit
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Abstract. In recent years increasing attention has been paid on the area of super-
character theories, especially to those of the upper unitriangular group. A particular
supercharacter theory, in which supercharacters are indexed by set partitions, has sev-
eral interesting properties, which make it object of further study. We define a natural
generalization of the Plancherel measure, called superplancherel measure, and prove
a limit shape result for a random set partition according to this distribution. We also
give a description of the asymptotic behavior of two set partition statistics related to
the supercharacters. The study of these statistics when the set partitions are uniformly
distributed has been done by Chern, Diaconis, Kane and Rhoades.
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1 Introduction

Let p be a prime number, q a power of p, and K the finite field of order q and charac-
teristic p. Consider Un = Un(K), the group of upper unitriangular matrices with entries
in K, it is known that the description of conjugacy classes and irreducible characters of
Un is a wild problem. To bypass the issue, André [2] and Yan [15] set the foundations
of what is now known as “supercharacter theory”. The idea is to meld together some
irreducible characters and conjugacy classes (called respectively supercharacters and su-
perclasses), in order to have characters which are easy enough to be tractable but still
carry information of the group. For example, in [3], Arias-Castro, Diaconis and Stan-
ley described random walks on Un utilizing only the supercharacter table (usually the
complete character table is required). More recently, Diaconis and Isaacs [8] formalized
the axioms of supercharacter theory, generalizing the construction from Un to algebra
groups.

Of the various supercharacter theories for Un a particular nice one, hinted in [1]
and described by Bergeron and Thiem in [5], has the property that the supercharac-
ters take integer values on superclasses. This is particularly interesting because of a
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result of Keller [10], who proves that for each group G there exists a unique finest su-
percharacter theory with integer values. Although it is not yet known if Bergeron and
Thiem’s theory is the finest integral one, it has remarkable properties which make it
worth of a deeper analysis. In this theory the supercharacters of Un are indexed by set
partitions of {1, . . . , n} and they form a basis for the Hopf algebra of superclass func-
tions. This Hopf algebra is isomorphic to the Hopf algebra of symmetric functions in
noncommuting variables. In this supercharacter theory the characters depend on three
statistics defined for a set partition π of [n]: d(π), which is the number of arcs of π;
dim(π) = ∑ max(B) −min(B), where the sum runs through the blocks B of π; and
crs(π), which is the number of crossings of π. More precisely, if χπ is the supercharacter
associated to the set partition π, then χπ(1) = qdim(π)−d(π) and 〈χπ, χπ〉 = qcrs(π).

In the setting of probabilistic group theory one is interested in the study of statistics of
the “typical” irreducible representation of the group. A natural probability distribution
is the uniform distribution; in [7] and [6], Chern, Diaconis, Kane and Rhoades study
the statistics dim and crs for a uniform random set partition, proving formulas for the
moments of dim(π) and crs(π) and, successively, a central limit theorem for these two
statistics.

In representation theory another natural distribution is the Plancherel measure, which
is a discrete probability measure associated to the irreducible characters of a finite group.
The Plancherel measure has received vast coverage in the literature, especially in the case
of the symmetric group Sn, for which a limit shape result was proven, independently, by
Kerov and Vershik [12] and Logan and Shepp [13].

From the study of the Plancherel measure of Sn has followed a theory regarding
the Plancherel growth process. Indeed, there exist natural transition measures between
the partitions of n and the partitions of n + 1, which generate a Markov process whose
marginals are the Plancherel distributions. The transition measures have a nice combi-
natorial description, see [11].

In this paper we generalize the notion of Plancherel measure to adapt it to superchar-
acter theories. We call the measure associated to a supercharacter theory superplancherel
measure. In Section 2.2 we show that for a tower of groups {1} = G0 ⊆ G1 ⊆ . . .,
each group endowed with a “coherent” supercharacter theory, there exists a nontrivial
transition measure which yields a Markov process; the marginals of this process are
the superplancherel measures. In order to show this, we generalize a construction of
superinduction for algebra groups to general finite groups. Such a construction was
introduced by Diaconis and Isaacs in [8] and developed by Marberg and Thiem in [14].

We then consider the superplancherel measure associated to the supercharacter the-
ory of Un described by Bergeron and Thiem. In this setting, the superplancherel measure
has an explicit formula depending on the statistics dim(π) and crs(π); we give a direct
combinatorial interpretation of this measure.

The main result of the paper is a limit shape for a random superplancherel distributed



The superplancherel measure 3

1 2 3 n

Figure 1: Description of a random superplancherel distributed set partition: the left
image is the diagram of the set partition with the highest probability; in the center
there is the corresponding measure µπ; on the right there is a computer generated
measure µπ for π ` [200]. The algorithm we use for the program that generates a big
random set partition is based on the combinatorial interpretation in Section 3.1.

set partition. In order to formulate this result we immerse set partitions into the space
of subprobabilities (i.e., measures with total weight less than or equal to 1) of the unit
square [0, 1]2 with some other properties. This embedding is similar to that of permutons
for random permutations and graphons for random graphs, see for example [9]. Given
a set partition π we refer to the corresponding subprobability as µπ. We describe a
measure Ω such that

µπ → Ω almost surely. (1.1)

The measure Ω is the uniform measure on the set {(x, 1− x) s.t. x ∈ [0, 1/2]} of total
weight 1/2. Informally, we can say that a set partition chosen at random with the
superplancherel measure is asymptotically close to the one with highest probability (see
Section 1). In the process, we obtain asymptotic results for the statistics dim(π) and
crs(π) when π is chosen at random with the superplancherel measure. Namely, we
show that almost surely

dim(π) ∼ 1
4

n2, crs(π) ∈ o(n2). (1.2)

Sections 4 and 5 present the main arguments of the proofs of (1.1) and (1.2). As
mentioned, the main idea is to consider set partitions as particular measures of the unit
square. With this transformation the statistics dim(π) and crs(π) can be seen as integrals
of the measure µπ. We use an entropy argument to delimitate a set of set partitions of
maximal probability. Finally, we relate the results on the entropy into the weak* topology
of measures of [0, 1]2.
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2 Preliminaries

2.1 Supercharacter theory and the superplancherel measure

In order to recall the definition of supercharacter theory, we fix some notation of charac-
ter theory: given a group G we call Irr(G) the set of irreducible characters. The regular
character is

ρG(g) = ∑
ξ∈Irr(G)

ξ(1G)ξ(g) =
{
|G| if g = 1G
0 otherwise,

and the Plancherel measure associated to G is PlG(ξ) := ξ(1)2/|G|. If χ, ξ are characters
of G and ξ is irreducible we say that ξ is a constituent of χ if 〈χ, ξ〉 6= 0, where 〈·, ·〉 is the
Frobenius inner product. Moreover, we call I(χ) := {ξ ∈ Irr(G) s.t. 〈χ, ξ〉 6= 0}.

Definition 2.1. A supercharacter theory of a finite group G is a pair (scl(G), sch(G)) where
scl(G) is a set partition of G and sch(G) an orthogonal set of nonzero characters of G (not
necessarily irreducible) such that:

1. | scl(G)| = | sch(G)|;

2. every character χ ∈ sch(G) takes a constant value on each member K ∈ scl(G);

3. each irreducible character of G is a constituent of one, and only one, of the characters
χ ∈ sch(G).

The elements K ∈ scl(G) are called superclasses, while the characters χ ∈ sch(G) are
supercharacters. It is easy to see that every element K ∈ scl(G) is always a union of
conjugacy classes. Since a supercharacter χ ∈ sch(G) is always constant on superclasses
we will sometimes write χ(K) instead of χ(g), where K ∈ scl(G) is a superclass and
g ∈ K. Notice that irreducible character theory is a supercharacter theory.

Definition 2.2. Fix a supercharacter theory T = (scl(G), sch(G)) of G, we define the super-

plancherel measure SPlT
G of T as follows: given χ ∈ sch(G), then SPlT

G(χ) := 1
|G|

χ(1)2

〈χ,χ〉 .

Notice that if T is the irreducible character theory, then the superplancherel measure
is equal to the usual Plancherel measure. We stress out that the definition of super-
plancherel measure depends on the supercharacter theory but we will omit it if it is
clear from the context.

It is relatively easy to show that this measure is indeed a probability measure. We let
the reader work out the details, which will anyway be available in the extended version
of this paper.
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2.2 Superinduction and transition measure

In this section we extend the notion of superinduction, defined by Diaconis and Isaacs
in [8] for algebra groups, to general finite groups, and we use it to define a transition
measure. Let G be a finite group, H ≤ G a subgroup and (scl(G), sch(G)) a superchar-
acter theory for G. Let φ : H → C be any function, we set φ0 : G → C to be φ0(g) = φ(g)
if g ∈ H and φ0(g) = 0 otherwise. We set

SIndG
H(φ)(g) :=

|G|
|H| · |[g]| ∑

k∈[g]
φ0(k),

where [g] ∈ scl(G) is the superclass containing g. By construction, SIndG
H(φ) is a su-

perclass function. A supercharacter version of the Frobenius reciprocity holds: if ψ is a
superclass function then

〈SIndG
H(φ), ψ〉 = 〈φ, ResG

H(ψ)〉,

where ResG
H(ψ) is the restriction of ψ to H. The proof of this equality is elementary, and

we leave the details to the reader.
Consider now also H endowed with a supercharacter theory (scl(H), sch(H)). Sup-

pose also that this supercharacter theory is coherent with the one of G, that is, for each
H ∈ scl(H) there exists K ∈ scl(G) such that H ⊆ K. Notice that this is equivalent to
the requirement that ResG

H(χ) is a superclass function on H for each χ ∈ sch(G) by [8,
Theorem 2.2].

Definition 2.3. Let χ ∈ sch(G), γ ∈ sch(H). The transition measure ρG
H(γ, χ) is defined as

ρG
H(γ, χ) :=

|H|
|G|

χ(1)
γ(1)

〈SIndG
H(γ), χ〉
〈χ, χ〉 .

Proposition 2.4. The following hold:

1. For each χ ∈ sch(G) we have ∑γ∈sch(H) ρG
H(γ, χ) SPlH(γ) = SPlG(χ).

2. For each γ ∈ sch(H) we have ∑χ∈sch(G) ρG
H(γ, χ) = 1.

In particular, let {1} = G0 ↪→ . . . ↪→ Gn ↪→ Gn+1 ↪→ . . . be a tower of groups, and suppose
that for each n we associate a supercharacter theory Tn to Gn which is coherent with Tn+1. Let
χ1 be the unique supercharacter for G0 = {1}; consider the Markov process with initial state χ1

and transition measures ρ
Gn+1
Gn

. Then this process has marginals distributed as SPln.

We omit the proof of this proposition, which is straightforward from the definitions.
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3 Supercharacter theory for unitriangular matrices

Let K be the finite field of order q and characteristic p. The group Un = Un(K) is the
group of upper unitriangular matrices of size n× n and entries belonging to K, that is,

Un = Un(K) =




1 a1,2 · · · a1,n

1 a2,3
...

. . . an−1,n
1

 ∈ Mn×n(K)

 .

In [5], Bergeron and Thiem describe a supercharacter theory in which both sch(Un) and
scl(Un) are in bijection with sets partitions of [n] = {1, . . . , n}. Through the section,
given set partitions π, σ ` [n] we will write χπ for the supercharacter corresponding to
π and Kσ for the superclass corresponding to σ.

This supercharacter theory has an explicit formula for the supercharacter values; in
order to recall it we need to set some notation: fix n and a set partition of π ` [n], if
two numbers i and j are in the same block of the set partition π ` [n] and there is no
k in that block such that i < k < j, then the pair (i, j) is said to be an arc of π. The
set partition π is uniquely determined by the set D(π) of arcs. The dimension dim(π) is
dim(π) := ∑(i,j)∈D(π) j− i; the number of crossings of π is crs(π) of π, where a crossing
is an unordered pair of arcs {(i, j), (k, l)} ⊆ D(π) such that i < k < j < l; the number
of nestings is nst(π), where a nesting is an unordered pair of arcs {(i, j), (k, l)} ⊆ D(π)
such that i < k < l < j. Given i, j with i < j ≤ n, we say that the pair (i, j) is
π-regular if there exists no k < i such that (k, j) ∈ D(π) and there exists no l > j
such that (i, l) ∈ D(π). The set of π-regular pairs is denoted Reg(π). For example, if
π = {{1, 4}, {2, 3, 5}} = , then Reg(π) = {(1, 4), (1, 5), (2, 3), (2, 5), (3, 5)}; if
an arc is not regular then it is called singular and the set of π-singular pairs is denoted
Sing(π). In the previous example thus Sing(π) = {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)}. By a
counting argument one can prove that the cardinality | Sing(π)| is

| Sing(π)| = ∑
(i,j)∈D(π)

2(j− i− 1)− ]{(i, j), (l, k) ∈ D(π) s.t. i < l < j < k}

= 2(dim(π)− d(π))− crs(π).

Given π, σ ` [n], a formula for χπ(Kσ) is proven in [4]. In particular the formula
implies that

χπ(1) = (q− 1)d(π) · qdim(π)−d(π) and 〈χπ, χπ〉 = (q− 1)d(π)qcrs(π);

hence we obtain

SPln(χ
π) := SPlUn(χ

π) =
1

q
n(n−1)

2

(q− 1)d(π) · q2 dim(π)−2d(π)

qcrs(π)
.
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Jπ =


1 • • ∗ 0
0 1 ∗ • 0
0 0 1 • ∗
0 0 0 1 •
0 0 0 0 1

 µπ =

1

4/5

3/5

2/5

1/5

0
14

5
3
5

2
5

1
5

Figure 2: Set π = {{1, 4}, {2, 3, 5}}, we give an example of Jπ (left picture) and µπ

(right picture). In Jπ the symbol ∗ means that in that position there is an element
of K×, and • is an element of K. In the graphic of µπ we have that everywhere but
the gray areas has zero weight, while the gray areas represent where the measure
has uniform weight. Each square has total weight 1

n = 1
5 , so that the total weight is∫

∆ dµ = 3
5 .

3.1 A combinatorial interpretation of the superplancherel measure

We associate to π ` [n] the following set Jπ ⊆ Un: a matrix A belongs to Jπ iff

• if (i, j) ∈ D(π) then Ai,j ∈ K \ {0};

• if (i, j) ∈ Reg(π) \ D(π) then Ai,j = 0;

• if (i, j) ∈ Sing(π) then Ai,j ∈ K.

For an example of Jπ see Figure 2. We want to stress out that the Jπ are not the
superclasses Kπ.

Lemma 3.1. Given a matrix A ∈ Un, there exists a unique π such that A ∈ Jπ. In other words,
Un =

⊔
π`[n]

Jπ.

The proof of this lemma is relatively easy and we will omit it in this extended abstract.
It is clear that

|Jπ| = (q− 1)d(π) · q| Sing(π)| =
(q− 1)d(π) · q2 dim(π)−2d(π)

qcrs(π)
.

Hence, we can see the superplancherel measure of π as the probability of choosing
a random matrix in Un which belongs to Jπ, that is, SPln(χπ) = |Jπ |

|Un| . We use this
interpretation to generate the third picture of Section 1.
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4 Set partitions as measures on the unit square

Set ∆ = {(x, y) ∈ [0, 1]2 s.t. y ≥ x}. In this section we describe an embedding of set
partitions into particular measures on ∆. We settle first some notation: if A ⊆ R2 is
measurable then we write λA for the uniform measure on A of total mass equal to 1,
that is,

∫
A dλA = 1; given n ∈N, i < j ≤ n, set

Ai,j =

{
(x, y) ∈ R2 s.t.

i− 1
n
≤ x ≤ i

n
,

j− 1
n
≤ y ≤ j

n

}
⊆ ∆;

for π ` [n] we will write Aπ :=
⋃
(i,j)∈D(π) Ai,j and µπ = 1

n ∑(i,j)∈D(π) λAi,j . An example
is given in the second part of Figure 2.

Definition 4.1. Let X ⊆ R2, set π1 (respectively π2) the projection into the first (respectively
the second) coordinate. A measure µ on X is said to have uniform marginals if for each interval
I ⊆ π1(X) and J ⊆ π2(X)

µ(I × π2(X)) = |I|, µ(π1(X)× J) = |J|.

Similarly, the measure µ has subuniform marginals if, for a pair of intervals I ⊆ π1(X) and
J ⊆ π2(X),

µ(I × π2(X)) ≤ |I|, µ(π1(X)× J) ≤ |J|.

As a measure on ∆, µπ has subuniform marginals and in particular
∫

∆ dµ ≤ 1. We
call subprobability a positive measure with total weight less than or equal to 1.

4.1 Statistics of set partitions approximated by integrals

We define the following space of measures:

Γ := {subprobabilities µ on ∆ s.t. µ has subuniform marginals};

In this new setting we can describe the values of d(π), dim(π), crs(π) as follows:

Lemma 4.2. Let π ` [n], so that µπ ∈ Γ, then

1. d(π) ∈ O(n);

2. dim(π) = n2
∫

∆(y− x) dµπ(x, y);

3. crs(π) = n2
∫

∆2 1[x1 < x2 < y1 < y2] dµπ(x1, y1) dµπ(x2, y2) + O(n).

The proof of this lemma is technical and relatively uninteresting, hence we will not
write it in this extended abstract (it is of course available in the original paper).

For each measure µ ∈ Γ we set
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• I1(µ) :=
∫

∆(y− x) dµ;

• I2(µ) :=
∫

∆2 1[x1 < x2 < y1 < y2] dµ(x1, y1) dµ(x2, y2);

• I(µ) := 1
2 − 2I1(µ) + I2(µ).

Hence for π ` [n] we have SPln(χπ) = exp
(
−n2 log q · I(µπ) + O(n)

)
.

4.2 Maximizing the entropy

We set

Γ̃ := {subprobabilities µ on [0, 1/2]× [1/2, 1] s.t. µ has uniform marginals}.

Define the measure Ω with density 1/
√

2 on the set
{
(x, 1− x) s.t. x ∈

[
0, 1

2

]}
and 0

elsewhere, and notice that Ω ∈ Γ̃. The goal of this section is to prove the following
proposition:

Proposition 4.3. Consider µ ∈ Γ, then I(µ) = 0 if and only if µ = Ω.

We will prove the proposition after studying the two functionals I1 and I2.

Lemma 4.4. Let µ ∈ Γ, then I1(µ) =
∫

∆(y− x) dµ ≤ 1/4, with equality if and only if µ ∈ Γ̃.

Sketch of the proof. We “squeeze” the measure µ toward the upper left corner of ∆, in
order to maximize I1: consider the two functions fµ(x) := µ([0, x] × [0, 1]) ≤ x and
gµ(y) := 1− µ([0, 1]× [y, 1]) ≥ y, we define a subprobability µ̃ as

µ̃([0, fµ(x)]× [gµ(y), 1]) := µ([0, x]× [y, 1]),

and we claim that I1(µ) ≤ I1(µ̃), with equality if and only if µ has uniform marginals.
The unconvinced reader may look at the Figure 3 (first and second graphs) or at the
extended version of this paper.

Call lµ = µ(∆), we notice that µ̃ has uniform marginals, hence the x-marginal of µ̃ is
Leb([0, lµ]), the Lebesgue measure on the interval [0, lµ]; similarly, the y-marginal of µ̃ is
Leb([1− lµ, 1]). Hence

I1(µ̃) =
∫

∆
y dµ̃−

∫
∆

x dµ̃ =
∫ 1

1−lµ
y dy−

∫ lµ

0
x dx = lµ − l2

µ.

Since lµ ≤ 1, the maximal value of lµ(1− lµ) is obtained when lµ = 1/2, in which case
I1(µ̃) = 1/4. Notice that if µ has uniform marginals and lµ = 1/2 then µ = µ̃ ∈ Γ̃.

Lemma 4.5. Let µ ∈ Γ̃ such that I2(µ) = 0. Then µ = Ω.
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Figure 3: The first two graphics represent an example of the transformation of µ (left
image) into µ̃ (central image) of Lemma 4.4. The third graphic is an example of the
area division in the proof of Lemma 4.5. If the measure µ has non zero weight inside S
(here is pictured as the gray area), then it has also non zero weight in Q, and therefore
I2(µ) 6= 0.

Sketch of the proof. Define Fρ to be a variation of the distribution function for a measure
ρ ∈ Γ̃: Fρ(a, b) := ρ([0, a]× [1− b, 1]) for a, b ∈ [0, 1/2]. To prove the lemma it is enough
to show that Fµ(a, b) = FΩ(a, b) = min(a, b). Suppose a ≤ b (the other case is done
similarly), and consider the three sets S = [0, a] × [1/2, 1 − b], T = [0, a] × [1 − b, 1],
Q = [a, 1/2]× [1− b, 1] as in Figure 3. Because of the uniform marginals, one can prove
that if

∫
S dµ > 0 then

∫
Q dµ > 0, so that

I2(µ) ≥
∫

S×Q
1[x1 < x2 < y1 < y2] dµ(x1, y1) dµ(x1, y2) = µ(S) · µ(Q) > 0,

which is a contradiction. Thus
∫

S dµ = 0. This implies that Fµ(a, b) = µ(T) = µ(T∪ S) =
a and the proof is concluded.

Proof of Proposition 4.3. It is easy to see that I(Ω) = 0. Suppose on the other hand that
I(µ) = 0, then I1(µ) =

1
4 +

I2(µ)
2 ≤ 1

4 by Lemma 4.4. This implies that I2(µ) = 0 and thus
I1(µ) = 1/4; hence µ ∈ Γ̃ by Lemma 4.4, and we can apply Lemma 4.5 to conclude that
µ = Ω.

5 Convergence in the weak* topology

In this section we sketch the proof of the main result of the paper, that is, that µπ(n)

converges with the weak* convergence to Ω when π(n) is a random set partition dis-
tributed with the superplancherel measure. Recall that the weak* topology in the space
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of subprobabilities M≤1(∆) of the metric space ∆ = {(x, y) ∈ R2 s.t. 0 ≤ x ≤ y ≤ 1}
is defined as follows: for a sequence {µn}n∈N ⊆ M≤1(∆) and µ ∈ M≤1(∆), then we

say that µn
w∗→ µ if

∫
f (x) dµn(x) →

∫
f (x) dµ(x) for each f : ∆ → R continuous. It

is known that since ∆ is compact then there is a metric, called the Lévy-Prokhorov dis-

tance dL−P, associated to the weak* convergence, in the sense that µn
w∗→ µ if and only if

dL−P(µn, µ)→ 0.

Theorem 5.1. We have

SPl({π ` [n] s.t. dL−P(µ, Ω) > ε})→ 0.

Proof. Due to space restrictions, we will not present here the proofs of the following 2
lemmas, which can nevertheless be found in the extended version of this paper:

• the space Γ is compact with respect to the weak* topology;

• the functional I(µ) := 1
2 − 2I1(µ) + I2(µ) is continuous with this topology.

We claim that for each ε > 0 there exists δ > 0 such that if dL−P(µ, Ω) > ε then
|I(µ)| > δ. Fix ε > 0 and suppose the claim not true, so that for each δ > 0 there is
µδ with dL−P(µδ, Ω) > ε and |I(µ)| ≤ δ. Set δ = 1/n, we obtain a sequence (µn) with
|I(µn)| ≤ 1/n. Since Γ is compact there exists a converging subsequence (µin). Call µ

the limit of this subsequence. Since I is continuous we have I(µ) = limn I(µin) = 0. This
is a contradiction, since Ω is the unique measure in Γ with I(Ω) = 0, and the claim is
proved.

Fix ε > 0, then there exists δ > 0 such that if dL−P(µ, Ω) > ε then |I(µ)| > δ. We
define the set Nn

ε := {π ` [n] s.t. dL−P(µ, Ω) > ε}, then

SPl(Nn
ε ) = ∑

π∈Nn
ε

exp(−n2 log qI(µπ) + O(n)).

Recall that the number of set partitions of n, called the Bell number, is bounded from
above by nn; therefore

SPl(Nn
ε ) ≤ nn sup

π∈Nn
ε

exp(−n2 log qI(µπ) +O(n)) < exp(−n2δ log q +O(n log n))→ 0.

Corollary 5.2. For each n ≥ 1 let πn be a random set partition of n distributed with the
superplancherel measure SPln, then

µπn → Ω,
dim(πn)

n2 → 1
4

, crs(πn) ∈ o(n2) almost surely.

Proof. We prove only the convergence of µπn , since the cases dim(πn) and crs(πn) are
similar. As before, set Nn

ε := {π ` [n] s.t. dL−P(µ, Ω) > ε}, so that the superplancherel
measure is bounded: SPl(Nn

ε ) < exp(−n2δ log q + O(n log n)). Thus ∑n SPln(Nε
n) < ∞

and we can apply the first Borel Cantelli lemma, which implies that lim supn Nε
n has

measure zero for each ε > 0, and therefore µπn → Ω almost surely.
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